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The probability of hertzian fracture 
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The indentation strength of brittle solids is traditionally characterized by Auerbach's law, 
which predicts a linear relationship between the load required to initiate a Hertzian cone crack 
and the radius of a spherical indentor. This paper reviews both the energy balance and flaw 
statistical explanations of Auerbach's law. It is shown that Auerbach's law in the strictest 
sense only applies to well-abraded specimens. A novel application of Weibull statistics is 
presented which allows the distribution of fracture loads to be predicted for any specimen 
surface condition for a given indentor size. The indentation strength of a brittle solid, for both 
spherical and cylindrical indentors, is shown to be influenced by both its surface flaw statistics 
and the degree of interfacial friction. It is observed that the indentation strength of soda-lime 
glass is increased by a factor of about three times that expected for frictionless contact, and 
that for a fully bonded indentor, conical fractures cannot occur. 

1. I n t r o d u c t i o n  
Indentation fracture of glass was first studied in detail 
by Hertz [1, 2] in 1881. Hertz found that a cone crack 
of characteristic appearance occurred in a fiat speci- 
men of glass which was loaded by a hard, spherical 
indentor. The cone crack was observed to start near 
the edge of the contact circle where the tensile stresses 
in the specimen were calculated to be the greatest. In 
1891, Auerbach I-3] noted that the cone crack ap- 
peared when the force reached a critical value which is 
directly proportional to the radius of the indentor. 
The empirical linear relationship between this critical 
force and the radius of the indentor has become 
known as "Auerbach's law". Early analyses of this 
type of fracture appeared to indicate that Auerbach's 
law contradicts the Griffith energy balance criterion 
I-4] for crack growth. Attempts were subsequently 
made to explain Auerbach's law in terms of the statist- 
ical spread of surface flaws in the specimen and quant- 
itative analysis [5] appeared to show good correlation 
with experimental evidence. However, the statistical 
approach failed to account for several key features 
of the phenomenon. In 1967, Frank and Lawn [6] 
applied the Griffith fracture criterion so as to account 
for the way in which the tensile stress field rapidly 
decreases with depth into the specimen in the vicinity 
of the indentor. They argued that Auerbach's law is a 
consequence of the existence of a hitherto unobserved 
shallow ring crack which precedes the formation of 
the more familiar visible cone crack. In 1984, 
Mouginot and Maugis [7], in an important develop- 
ment of Frank and Lawn's work, showed that 
Auerbach's law could be explained, without reference 
to an initial ring crack, by including the effect of the 
starting radius of the crack in the energy balance 
method. 

In the present paper, we briefly review the work of 
Mouginot and Maugis and then develop a method, 

using Weibull statistics [8], which allows a determina- 
tion of the probability of occurrence of an indentation 
cone crack for a given load and specimen surface 
condition. We then review some of the published data 
for Hertzian fracture and present some experimental 
results for both spherical and cylindrical indentors. 
These data indicate that the frictional forces between 
the indentor and the specimen have a major influence 
on the stress fields which lead to indentation fracture, 
and that surface flaw statistics influence the prob- 
ability of occurrence of such a fracture. 

2. T he  Hertz ian  s t r e s s  f ie ld  
When a rigid cylindrical or spherical indentor is in 
frictionless contact with a fiat surface of a solid, linear 
elastic analysis shows that on the surface of the speci- 
men, beneath the indentor, all three principal stresses 
are compressive and all have approximately the same 
magnitude. Outside the contact circle, the ol  principal 
stress is a tensile radial stress and has a maximum 
value at the edge of the contact circle. It is this stress 
that causes the initiation of a cone crack. The hoop 
stress, 0-2, is compressive in this region, and on the 
surface, has a value approximately equal (but opposite 
in sign) to that of the radial tensile stress 0-1. The 
direction of the third principal stress, 0-3, at the surface 
is normal to the surface because, by definition, it is 
orthogonal to 0-1 and 0-2- The magnitude of 0-3 at the 
surface is, of course, zero outside the contact circle 
because it acts normal to a free surface in this region. 
It is convenient to label the stresses such that nearly 
always 0-1 > 0-2 > 0-3" 

For points inside the specimen, the magnitude and 
direction of the three principal stresses change. The 0-1 
stress decreases rapidly with increasing depth but 
remains tensile outside a drop-shaped compressive 
zone underneath the indentor. The 0-2 hoop stress 
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remains compressive but with decreasing magnitude 
until at some depth in the material it becomes tensile. 
The so-called "normal stress", o3, is compressive for 
all points away from the surface and not directly 
below the indentor .  Fig. 1 Shows the contours of 
normalized principal stresses for an indentation stress 
field for the case of a flat punch cylindrical indentor. 
These contours were generated using the finite ele- 
ment method of analysis. In Fig. 1, the contours are 
normalized to the mean pressure beneath the in- 
dentor, and distances are expressed in terms of the 
indentor radius. 

The important feature of the indentation stress field 
for the initiation of a conical fracture is the tensile 
region near the specimen surface just outside the area 
of contact. For brittle solids, Hertz noted that when 
the load on the indentor is sufficient, the characteristic 
cone crack which forms appears to start close to the 
circle of contact near where o t is greatest and pro- 
ceeds down and outwards approximately along the 
path of the o 3 stress trajectory. The general features of ' 
a Hertzian cone crack are shown in Fig. 2. 

Assuming linear elasticity throughout, Hertz found 
that for a spherical indentor, the radius of the circle of 
contact, a, is related to the indentor load, P, the 
indentor radius, R, and the elastic properties of the 
materials by 
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(1 - v ' 2 ) E  

k = 1 + (1 - v 2) E' (lb) 

and E, v and E', v' are the Young's modulus and 
Possion's ratio for the specimen and the indentor, 
respectively. For an indentor and specimen of the 
same material, k = 2; for a rigid indentor, k = 1. 

Hertz also found that the maximum tensile stress in 
the specimen is radial and occurs at the edge of the 
contact circle at the surface. The magnitude of this 
maximum stress is 

P 
Ornax = (1 -- 2v)2~a 2 (2) 

The radial tensile stress on the surface outside the 
indentor decreases as the inverse square of the dis- 
tance away from the centre of contact. 

Combining Equations 1 and 2, the maximum tensile 
stress outside the indentor can be expressed in terms of 
the indentor radius, R 

O m a x  I ( l -  2v).-]F 4E ~2/3 
= 2re JL3( 1 ~ vZ)k J pX13R-2/3 (:3) 

Auerbach [3] found experimentally that, for a wide 
range of brittle materials, the force P required to 
produce a cone crack is proportional to R such that 

P = AR 
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Figure I C o n t o u r s  of cons tan t  stress genera ted  by the finite e lement  me thod  for a cylindrical flat punch  indentor.  (a) cr I, (b) ~2, (c) e%. (d) The  
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Figure 2 Hertzian cone crack parameters. 

where A is termed the Auerbach constant. Equation 4 
can be alternatively written in terms of the radius, a, of 
the contact region using Equation I 

P = 3 k(1 - v 2) a3/2 (5) 

Substituting Equation 4 into Equation 3 gives 

Omax [(1 -- 2v)A1/31[- 4E 12/3 
= ~ - j L 3 k ( l  _ v=) j R - ' / 3  (6) 

If ~max is the maximum tensile stress upon the occur- 
rence of a cone crack, then Auerbach's Law appears to 
imply that the tensile strength of the material depends 
on the radius of the indentor rather than being a 
material property - a size effect worthy of special note. 

The classical Hertzian stress field assumes a condi- 
tion of full slip between the indentor and the specimen. 
However, experiments described in the present work 
show that the inevitable presence of friction between 
the indentor and the specimen greatly influences the 
indentation stress field. Johnson et al. [9] have studied 
this phenomenon for spherical indentors. They found 
that the use of indentor and specimen materials of 
different elastic properties leads to frictional forces 
which effectively increase the fracture load when the 
indentor is more rigid than the specimen. 

We have undertaken a finite element analysis of the 
indentation of a flat specimen with a rigid cylindrical 
indentor for both full slip and no slip contact. 
Fig. l a - c  show the stress fields for frictionless contact, 
whereas Fig. ld shows the c h radial stress along the 
specimen surface for conditions of both full slip and no 
slip. It can be seen from Fig. ld that the radial tensile 
stress responsible for the formation of a classical 
Hertzian fracture all but disappears when the indentor 
is fully bonded to the specimen. 
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3. Fracture mechanics in the Hertz ian 
stress field 

In a classic work, Griffith [4] showed that the growth 
of a crack in a solid under stress can be described in 
terms of the energy needed to form new crack surfaces 
and the attendant release in strain energy. The ex- 
ternally applied uniform stress, o, required for the 
growth of an existing flaw of length 2c and unit width 
is 

27 E 11/2 
o >~ (1 - ~ ) ~ c J  (7) 

where 7 is the fracture surface energy (Jm-Z). The 
1 - v 2 term is included for the general case of plane 
strain. Equation 7 applies directly to a double-ended 
crack of length 2c contained fully within a uniformly 
stressed solid. It may also be applied with only a small 
error to a half crack of length c, such as may be found 
on the surface of a solid [6, 10]. 

Irwin [10] showed that the Griffith criterion for 
fracture may be expressed in terms of a stress intensity 
factor, KI, such that 

K?(1 - v ~) 
>~ 27 (8) 

E 

where 

K~ = o0rc) 1/2 (9) 

The left-hand side of Equation 8 is termed the strain 
energy release rate and is given the symbol G. The 
Griffith criterion is satisfied for K~ ~> K~c. K~c can be 
considered to be a material property and is known as 
the plane strain fracture toughness. 

K~c can be readily measured in the laboratory. A 
typical value for soda-lime glass is 0.78 MPa m 1/z. 
Using this value, Equation 8 gives a fracture surface 
energy, 7 = 3.6 J m -2, which is in agreement with 
various experimentally determined values of this 
quantity [11]. 

Frank and Lawn [6] applied Irwin's concept of the 
stress intensity factor to the indentation stress field 
and showed how the progress of a crack can be 
described in terms of the prior stresses. If we consider 
an internal crack of length 2c within a solid loaded by 
an externally applied stress, cy, as shown in Fig. 3a, 
then the stress intensity factor, K~, associated with the 
presence of the crack is readily determined from Equa- 
tion 9. If a series of surface tractions, opposite in 
direction to the stress, is then applied to the crack 
faces so as to close the crack completely, as shown in 
Fig. 3b, then at this point, the stress distribution, 
uniform or otherwise, within the solid is precisely 
equal to that which would have existed in the absence 
of the crack. The stress intensity factor thus drops to 
zero because there is no longer a concentration of 
stress at the crack tip, the crack having been com- 
pletely closed. The effect of the applied tractions in 
determining the stress intensity factors is therefore 
precisely equal (to within a sign) to that caused by the 
concentration of the macroscopic stress by the pre- 
sence of the crack. The stress intensity factor can thus 
be determined from the pre-existing stress field in the 
solid. 
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Figure 3 (a) Internal crack in a solid loaded with an external stress, 
~. (b) Crack closed by the application of a distribution of surface 
tractions F. (c) Internal crack loaded with surface tractions F A and 

F B . 

In order to calculate this stress intensity factor from 
the prior stress field, we may consider the situation 
illustrated in Fig. 3c. Irwin determined that the stress 
intensity factor, K,, at one of the crack tips, A, for a 
symmetric internal crack being loaded by forces, FA, 
applied on the crack faces to be 

F A ~ c - ~ b ]  1/2 
K , ,  - (10) 

As shown in Fig. 3c, forces F~ also contribute to the 
stress field at A and Irwin calculated the stress intens- 
ity factor, due to those forces, to be 

W K , .  - (11) 

An important property of stress intensity factors is 
that they are additive for the same type of loading. 
Therefore, the total stress intensity factor at crack tip 
A shown in Fig. 3c due to forces FA and FB, for 
symmetric loading, where F A = F ,  = F, is 

K I = KIA ,4- KIB 

2 F [ c  ],/2 
= ~ (c 2 _ b2 ) (12) 

Now, if, as we have stated previously, the Griffith 
energy balance criterion, as given by Equation 7, 
applies to both a single-ended and double-ended 

crack, then we may equally well say that Equation 12 
gives a good approximation to the stress intensity 
factor for a single-ended crack of length c. Both 
assumptions rely on the approximation that the stress 
field in the vicinity of the crack tip is little affected by 
forces or stresses at the opposite end of an equivalent 
double-ended crack. 

If the tractions are continuous along the length of 
the crack, but are directed so as to close the crack 
completely, then the force per unit length may be 
associated with a stress, c~, where F = ~(b)db. The 
total stress intensity factor is given by the integral 

2 iCcl/2 (~(b) K, = - (13) 
TCJO (C 2 -- b2)1/2 db 

where c is the length of the crack and ~(b) is then the 
prior stress distribution within the solid along the 
crack path. The stress intensity factor, as calculated by 
Equation 13 for surface tractions applied so as to close 
the crack, is precisely the same as that calculated for 
the crack in the absence of such tractions, which, for 
the uniform stress case, is given by Equation 9. Thus, 
the energetics associated with the growth of a crack 
within any stress field may be completely described by 
the prior stresses using Equation 13. 

Early workers applied the Griffith fracture criterion 
to flaws in the vicinity of an indentor in terms of the 
surface tensile stress only, as given by the Hertz 
equations. Combining Equations 3 and 7 gives the 
critical condition for failure as 

-1,, '2  2vl]l- 4E WP,J 3 

(14) 

Equation 14 states that P is proportional to R2C -3/2, 
If all the flaws in a specimen were of a uniform size, 
then the Griffith energy balance criterion would ap- 
pear to predict that P is proportional to N 2, in contra- 
diction to Auerbach's empirical law. 

Some workers [5, 12] have attempted to explain 
Auerbach's law in terms of the surface flaw statistics of 
the specimen. It was argued that for a larger indentor 
radius, the increased chance that the region of max- 
imum tensile stress would include a particularly large 
flaw may result in the formation of a cone crack at a 
reduced load, thus reducing the R 2 dependency. 

The main criticisms of the flaw statistical explana- 
tion are: 

(a) it is extremely improbable that every piece of 
material would have the exact flaw distribution re- 
quired to produce the linear form of Auerbach's law; 

(b) because smaller indentors sample smaller areas 
of specimen surface, the scatter in results would be 
expected to increase with decreasing R. Langitan and 
Lawn [13] claim that this is not observed, although 
the data of Hamilton and Rawson [5] appear to show 
otherwise; 

(c) the flaw statistical explanation predicts that if all 
flaws were of the same size, then P is proportional to 
R 2 if one applies the Griffith energy balance criterion 
as given by Equation 14. Langitan and Lawn [13] 
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show that there does exist a range of flaw sizes for 
which Auerbach's law still holds even when all flaws 
are of the same size. 

The apparent violation of the Griffith energy bal- 
ance criterion shown by the previous analysis is a 
consequence of the assumption that the stress dis- 
tribution along the length of a cone crack is uniform, 
and equal to the surface stresses given by the Hertz 
equations. In a more rigorous application of the 
Griffith criterion, Frank and Lawn [-6] included the 
effect of the changing level of stress along a crack path 
which started at the radius of the circle of contact and 
followed the cy 3 stress trajectory. Their analysis 
showed that Auerbach's law was a consequence of the 
formation of a hitherto unobserved shallow ring crack 
which preceded the formation of the more familiar 
cone crack. In an important development, Mouginot 
and Maugis [7] investigated the effect of the starting 
radius on the Griffith energy balance criterion applied 
in this manner. They noted that Frank and Lawn's 
theory unfortunately neglected the effect of the start- 
ing radius, which is always larger than that of the 
contact circle, and that they also used an artificially 
high value of Poisson's ratio in their calculations. The 
work of Mouginot and Maugis shows that Auerbach's 
law is a consequence of the peculiar nature of the 
diminishing stress field which, together with the radius 
of the indentor, influences the starting radius of the 
cone crack and hence its subsequent progress through 
the bulk of the specimen. They argued that for a high 
density of flaws of uniform size, the cone crack is 
initiated at the radius for which the strain energy 
release rate is greatest. In certain cases, the existence of 
a seminal ring crack is predicted, but this feature was 
shown to be of less significance than the work of 
Frank and Lawn suggests. We now summarize the 
essential features of the analysis of Mouginot and 
Maugis. 

In indentation work, it is usual to normalize the 
units for stress in terms of the mean pressure, Pro, under 
the indentor, and the units of distance in terms of the 
radius of the circle of contact, a. Hence, we may define 

where 

o(b/a) 
f ib/a) - (15) 

Pm 

P 
- (16)  Pm ga 2 

To account for the change in stress intensity factor for 
a developing cone crack in which the width of the 
crack front increases as the crack path increases, 
Mouginot and Maugis include a correction in Equa- 
tion 13 to give 

2 ['c j rb c~(b) 
K l = - | C 1"2- (17) ~d0 rc(c 2 -- b2) 1/2db 

where 2~rc represents the length of the crack front at 
the tip of the cone crack, and 2rcr b is the crack length 
at the point defined by the variable b at which cy(b) 
applies. In this form, the integral includes the change 
in length of crack front as b increases from 0 to c. 
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A f u n c t i o n  ?p(c/a) may be written as 

c c b2) l /Z]d(b)]2  
dO(c/a) = a [ f ' o r ~ f f ( b / a ) / ( c ~  -2 ~ ]  J \ a ] J  

(181 

where fib~a) is given by Equation 15. Equation 18 
allows the Griffith criterion at the critical fracture 
condition to be expressed as 

G = 2y 

4(1 - v2)p 2 
-- rc3Ea3 ~(c/a) (19) 

The function 4~(c/a) contains an integral which is 
characteristic of the pre-existing stress field. The func- 
tion ~(c/a) must be evaluated for a particular starting 
radius, ro/a, because this determines the values of the 
stress along the crack path. 

~(c/a) can be determined from the stress field for 
either spherical or flat punch indentors as calculated 
by Sneddon [14], and Barquins and Maugis [15]. Tile 
integral may then be calculated numerically and the 
strain energy release rate determined for small incre- 
ments of crack length. 

Rearranging Equation 19 gives the critical load for 
fracture as 

= [ a 3 ]1/2[ ~3E2 7 .]1/2 

Pc L~J L4(I (2o) 

The factors in the second term on the right-hand side 
of Equation 20 are all material constants. It would 
appear, therefore, that Auerbach's empirical law 
would be consistent with the analysis if ~(c/a) 1/2 is 
also a constant, because then the critical load would 
be proportional to a 3/2, (which according to Equation 
5, is equivalent to Auerbach's law). However, ~(c/a) 1/2 
cannot be assumed constant because it contains terms 
for the stress field, the initial flaw size and indentor 
radius, all of which are variables. It is later shown that 
there is a range of values of stress level, indentor radius 
and flaw sizes for which qb(c/a) 1/2 is nearly constant. 
This range of cf/a is, therefore, called the "Auerbach 
range". 

Fig. 4 shows values for (3" 1 along the path of the cr 3 
stress trajectory for different starting radii. These res- 
ults were obtained from a numerical analysis using the 
finite-element method for the case of a rigid, cylindri- 
cal indentor with a condition of full slip between the 
indentor and the specimen. The dotted line shows an 
analytical result obtained by Mouginot and Maugis 
for one value of ro/a. 

For a surface with a high density of flaws, the largest 
strain energy release rate for a given flaw size deter- 
mines where and at what load a fla w will develop into a 
crack. Values of 4~(c/a) for cracks at different starting 
radii ro/a are shown in Fig. 5. The value of 4)(c/a) for 
any particular normalized radius ro/a is proportional 
to the strain energy release rate for a crack of size c/a 
which commences at that radius ro/a. For any flaw 
size % there is a particular radius, r o, for which the 
strain energy release rate is greatest. This corresponds 
to the upper envelope of the curves of 4~(c/a) in Fig. 5. 
We denote this upper envelope as O0(cf/a). When the 
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indentor load is steadily increased, the Griffith criter- 
ion will be first met when the strain energy release rate, 
as defined by the upper envelope in Fig. 5, becomes 
equal to twice the fracture surface energy. A cone 
crack will initiate at the lowest load for which a flaw of 
size cf/a exists in the specimen at a radius for which 
qb(cf/a) is greater than the critical value. 

For a high density of very small flaws, in the size 
range cf/a < 0.01, the critical load Pc, given by Equa- 
tion 20, decreases as the flaw size increases because the 
stress level along the length of the flaw is fairly con- 
stant and is approximately equal to the surface stress 
as given by the Hertz equation. In this case, the 
Griffith criterion for a uniform constant stress level 

may be employed. Smaller flaws are more likely to 
extend at a lower ro/a because the surface stress level is 
higher closer to the contact radius. Auerbach's law 
would not hold in this case. 

For  larger flaws, in the size range 0.1 < cf/a < 0.2, 
the situation is qualitatively different. Equation 20 and 
Fig. 5 show that the critical load increases with in- 
creasing flaw size because the strain energy release 
rate given by qb(c/a) decreases with increasing flaw 
size. The reason for this surprising result is in the form 
of the integral in Equation 18. The strain energy 
release rate depends on both the stress distribution 
along the flaw and the factor (c 2 -  b2) -1/2. Larger 
values of c cause the integral to evaluate to a lower 
value compared to smaller flaws at the same r o. 

From Equation 20, Pc/a 3/2 is proportional to 
~(c f /a ) -1 /2  Fig. 5 shows that there is a range of cf/a 
where the outer envelope, ~(cf/a), is fairly constant. 
This is the Auerbach range. In this range, the critical 
load Pc which initiates fracture is nearly independent 
of the flaw size and is therefore proportional to a 3/2. If 
we assume the existence of flaws of all sizes everywhere 
on the specimen surface, then for a particular flaw size, 
the starting radius is that which gives the maximum 
strain energy release rate. The Griffith criterion will be 
first met, upon an increasing load, at the position 
where the maximum strain energy release rate occurs. 
For another flaw size, the starting radius is different 
but the strain energy release rate, and hence the 
critical load, is not much different. 

For flaws within the Auerbach range of flaw sizes, 
the minimum critical load is given the symbol P, and 
is found from 

I Erc3ya 3 11/2 
Pa = (1 - v2)2(~a (21) 

where qb, is the value of qb(c/a) at the plateau. From 
Fig. 5, we estimate this to be at d~(c/a)= 0.0013. 
Mouginot and Maugis estimate O#(c/a)= 0.001 from 
their analytically derived stress field. The value of qb a is 
important because it influences the fracture surface 
energy which is estimated from data obtained from 
experiments. It should be noted that the curves in 
Fig. 5 apply to a cylindrical indentor. Mouginot and 
Maugis show that a similar set of curves can be 
generated using the stress field associated with a 
spherical indentor, which results in a slightly different 
value of ~,. In this work, we are concerned primarily 
with cylindrical indentors. 

It is clear from the above discussion that the ap- 
plication of the Griffith energy balance criterion for 
fracture relies on a precise knowledge of the indenta- 
tion stress field. Classical analytical results [14, 15] 
assume frictionless contact between the indentor and 
the specimen. Our finite-element work demonstrates a 
marked reduction in the magnitude of the radial 
tensile stress in the vicinity of the indentor in the 
presence of interracial friction. Thus, it is reasonable to 
expect that for a contact involving friction, larger 
indentor loads would be required to raise the tensile 
stress to a level capable of inducing the formation of a 
cone crack. Our experimental results, to be presented 
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below, indicate that friction cannot be totally elimina- 
ted. Although we recognize the difficulty of including 
frictional forces in the above analytical treatment 
precisely, as a first approximation, we propose the 
inclusion of an additional factor, [3, in Equation 21 
which has the effect of raising the indentor load 
required to satisfy the Griffith criterion. The inclusion 
of the factor [3 is purely empirical and we later show 
that although there is no theoretical reason to expect 
that frictional forces can be accommodated by such a 
simple adjustment, reasonable agreement between 
theory and experiment can nevertheless be obtained. 
Equation 22 shows our proposed expression for the 
minimum fracture load 

F Ert313Ta3 11/2 
ea = Li 1 ~ V~-I~Da (22) 

We define "fracture" to signify the event when a flaw 
extends immediately to form a circular ring crack 
concentric with the contact radius. Once a flaw has 
become a propagating crack, it extends according to 
the strain energy release function curve, Fig. 5, appro- 
priate to its starting radius. The development of this 
starting flaw into a ring crack precludes the extension 
of other flaws in the vicinity, even though the value of 
~(c/a) for those flaws at some applied load above the 
flaw initiation load may be larger than that calculated 
for the starting flaw as it follows its tO(c/a) curve. This 
is because the conditions which determine crack 
growth depend on the prior stress field. The function 
?p(c/a) can be used to describe the initiation of crack 
growth for all flaws which exist in the prior stress field 
but can only be considered applicable for the sub- 
sequent elongation for that flaw which actually first 
extends. 

In the next section, we show how the strain energy 
release rate argument developed by Mouginot and 
Maugis can be used to determine a probabilistic cri- 
terion for fracture for a given indentor load, radius 
and surface-flaw distribution. 

4. The probabi l i ty  of Hertzian f racture 
It is well known that both the size and distribution of 
surface flaws characterize the strength of brittle solids. 
The experimentally observed strength of glass can be 
conveniently described by Weibull statistics. In gen- 
eral terms, the probability of failure of a sample of 
glass of area A, subject to a uniform tensile stress o, 
can be expressed empirically by [8] 

pf = 1 - exp(kAcy m) (23) 

where m and k are called the Weibull parameters, 
which can only be determined by experiment. The 
parameter m describes the spread in strengths (a large 
value indicating a narrow range) and the parameter k 
is associated with the "reference strength" and the 
surface-flaw density of the specimen. The Weibull 
parameters can be considered as material constants to 
the extent that once determined for a known stress 
distribution, the probability of failure can be calcu- 
lated for a similar surface with a different stress dis- 
tribution. 

The probability of failure given by Equation 23 is 
precisely equal to the probability of finding a flaw 
within an area A of the specimen which is larger than 
the critical flaw size (as given by the Griffith criterion) 
for a uniform stress, or. The critical flaw size is given by 
Equation 9. 

Brown [16] determined Weibull parameters for as- 
received soda-lime glass sheets subjected to a lateral 
uniform pressure and found m--7 .3  and k = 5.1 
x 10 -57 m -2 Pa -7'3. Beason [17] used results of tests 
on 20 year old weathered glass to derive values of 
m = 6 and k = 7.19 x 10 -45 m - a P a  -6. For 1 m 2 area 
samples, it can be shown that these results correspond 
to a probability of failure of 50% for an applied 
uniform tensile stresses of 48 MPa for as-received 
glass, and 21 MPa for weathered glass. Corresponding 
flaw sizes are 0.3 and 1.1 mm, respectively. Because the 
actual tests were done with a uniform pressure, the 
flaw sizes which actually cause fracture will probably 
be larger than these values because the surface stress 
distribution is non-uniform throughout the thickness 
of the sample. 

This flaw size range is significant because it may 
influence the accuracy with which we can apply these 
Weibull parameters to indentation tests which by their 
nature sample only very small areas and hence very 
small flaws. 

Turning now to Hertzian fracture, in general there 
may exist a considerable number of flaws of lengths 
below, above and within the Auerbach range on the 
surface of a specimen. The probability of failure for a 
given indentor load depends directly upon the prob- 
ability of finding a surface flaw capable of causing 
fracture under the prevailing stresses near the surface 
within the area of solid around the indentor which is 
subjected to tensile stress. Critical stress and flaw size 
are related by Equation 9 when the stress is applied 
along the full depth of the flaw. In an indentation 
stress field, however, this only applies for very small 
flaws where the tensile stress is given by Hertz's 
equations. The uniform stress field approximation 
becomes progressively worse as the Auerbach range is 
approached. 

For larger flaws, within the Auerbach range, the 
fracture load becomes nearly independent of the flaw 
size because the maximum strain energy release rate, 
as described by the outer envelope of the curves of 
Fig. 5, is approximately constant. The probability of 
fracture from these flaws must, therefore, be expressed 
in terms of the probability of finding a flaw of the 
required size at a starting radius commensurate with 
the curves of Fig. 5. We now describe a method 
whereby this may be achieved. 

Consider a specimen supporting a cylindrical in- 
dentor of radius a with load P. Let P, be the minimum 
critical load for values of c/a within the Auerbach 
range. As noted above, the value of the function 4)(c/a) 
can be estimated for flaw sizes within the Auerbach 
range by inspection of Fig. 5. We estimate this to be at 
~a = 0.0013. Fig. 6 shows the relationship between the 
normalized strain energy release rate G/27, flaw size 
c/a, and starting radius ro/a, for three different values 
of P: P,_,  a load below the minimum critical load; P,, 
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family of curves shown. The flaw size range for G/27 > 1 for a 
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the minimum critical load; and P,+, a load greater 
than the minimum critical load. The Griffith criterion 
is met when G/2 v >/ 1. On this diagram, the line G/27 
= 1 has been drawn at positions corresponding to 

Pa- ,  Pa and Pa+. This allows the graph to be presented 
more clearly, showing only one family of curves. The 
curves shown in Fig. 6 rely only upon the choice of dOa 

and are independent of the value of V. However, if one 
wishes to draw curves as in Fig. 6 for a particular 
indentor load, then Pa must be first determined from 
Equation 21, which requires an estimate of y, or from 
Equation 22 in the more general case with friction, 
which requires an estimate of both y and [3. 

It is immediately evident that if the load is less than 
the minimum critical load P,, failure will not occur 
from any flaws, no matter  how large, because the 
Griffith criterion is never met. It can be seen that 
failure can only occur from flaws within the Auerbach 
range for loads equal to or greater than Pa" Fracture 
from flaws of size below, including, and beyond the 
Auerbach range can only occur if the load is greater 
than Pa. 

At a load Pa+, greater than P,, the Griffith criterion 
is met for various ranges of flaw sizes which depend on 
the particular values of starting radii. Fracture will 
occur from a flaw located at a particular starting 
radius if that flaw is within the range for which 
G/2y ~> l for that radius. This range of flaw sizes can 
be determined from Fig. 6 and is given by the c/a axis 
coordinates for the upper and lower bounds of the 
region where G/2y > 1 for the curve which corres- 
ponds to the radius under consideration, We have 
therefore reduced the problem of calculating the prob- 
ability of indentation fracture occurring at a particular 
radius and load to the probability of finding at least 
one flaw within a specific size range at that radius. 

To determine these probabilities, it is convenient to 
divide the area surrounding the indentor into n annu- 

lar regions of radii r i (i = l-n). To determine the 
probability of finding a flaw which meets the Griffith 
criterion within each annular region, Equation 23 may 
be used. Equation 23 gives the probability of failure 
for an applied uniform stress, but also can be used to 
calculate the probability of finding a flaw of size 
greater than or equal to the critical value for that 
stress, as given by Equation 9, within an area A of the 
surface of the solid. The strength parameters, m and k, 
for Equation 23 are those which are appropriate to the 
specimen surface condition. 

The probabilities calculated for each annular region 
can be suitably combined to yield a total probability 
of failure for a particular indentor load and radius for 
a given surface flaw distribution. 

We proceed as follows. Curves as shown in Fig. 6 
are drawn for a particular value of indentor load P. 
Consider one of the annular regions with radius r~ and 
area 8Ai. The range of values of flaw size which 
satisfies the Griffith criterion may be determined for 
this region by considering the appropriate line for 
dO(c/a) in Fig. 6. For  example, the vertical lines in Fig. 6 
show the range of flaw sizes, for P/Pa = 1.5, which, 
should they exist within the increment centred on 
r~/a = 1.2, will cause fracture at that radius. Let this 
range be denoted by c I ~< c ~< c 2. We therefore require 
the probability of finding such a flaw within this size 
range in the area 8A~. This is equal to the difference 
between the probability of finding a flaw of size c > c 1 
and the probability of finding a flaw of size c > c 2. 
However, the probability of finding a flaw of size 
greater than a specific size, say cl, within the area 8A is 
precisely equal to the Weibull probability of failure 
(Equation 23) under the corresponding critical stress 
as given by Equation 9. 

Once a particular indentor size has been specified, 
then the probability of finding a flaw of size greater 
than cl within the annular region of radius r~ and 
width 8r~, which has an area 8A~ = 2~ri6r i, is 

lc (24) pi(c > cl) = 1 - exp - k2xri6r i ~1)1/2 

Similarly, the probability of finding a flaw of size 
greater than c 2 within the same area element 8A~ is 
given by 

pi(c > C2)  = 1 -- exp _ k2xriSri m (25) 

The probability of finding a flaw of size in the range 
cl ~< c ~< c 2 within area 8A~ is the difference in prob- 
abilities given by Equations 23 and 24 and is equal to 
the probability of failure from a flaw of size within that 
range 

p f / ( C  1 ~< C ~< C 2 )  = pi(c > C l )  - -  pi(c > C 2 )  (26) 

The values c I and c z may be determined for all 
annular regions by inspection of Fig. 6. Because a two- 
parameter  Weibull function gives a non-zero prob- 
ability of failure for even the lowest stresses, it would 
appear that the upper limit of r~/a should extend to the 
full dimensions of the specimen where the effect of the 
indentation stress field may still be apparent. How- 
ever, if one is interested in loads near to the minimum 
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critical load for flaws within the Auerbach range, P,, 
then it is necessary to consider only starting radii 
which correspond to the upper end of the Auerbach 
range, that is, r j a  = 1.5 which gives a maximum 
~(cf/a) at c/a = 0.1. 

The probability of fracture not occurring from a 
flaw within the region 8A~ is found from 

p~, = 1 - pf~ (27) 

The probability of survival for the entire region of n 
annular elements surrounding the indentor is thus 
given by 

p~ = p~p~p~p~,. . . p~, (28) 

Therefore, finally, the probability of failure, Pe, for the 
entire region, at the load p/p,, is then given by: 

PF = 1 -- PS (29) 

This calculation is repeated for different values of p/p,  
to obtain values of probability of failures for a particu- 
lar value of indentor radius, a. 

Probabilities of failure for both as-received and 
weathered glass have been calculated for a range of 
cylindrical indentor sizes corresponding to those used 
in indentation experiments by various workers. The 
results for as-received and weathered glass are shown 
in Figs 7 and 8, respectively, where the fracture load 
has been expressed as a force rather than the ratio 
P/P, .  

The curves in Figs 7 and 8 rely on an estimation of 
the fracture surface energy, Y (and also the factor 13, if 
interfacial friction is to be included) in Equations 21 
and 22. Although the fracture surface energy may, in 
principle, be determined from indentation tests, we 
believe that such estimations are inaccurate due to the 
inevitable presence of friction between the indentor 
and the specimen. For example, if friction is assumed 
to be negligible, the fracture data reported by 
Langitan and Lawn [-133, and our own data, to be 
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range of cylindrical indentor radii for weathered glass. (a-h) See 
Fig. 7. 

presented shortly, imply a fracture surface energy in 
the order of 1 0 J m  -2 which seems to be too large. 
However, for the purposes of calculating data for Figs 
7 and 8, we have assumed frictionless contact, 13 -- 0, 
and a fracture surface energy 3' = 3.6 J m -  2 calculated 
from Equation 8 and Kic = 0.78 M P a m  1/2. The effect 
of friction could be included in the data of Figs 7 
and 8 by re-scaling the values of indentor load by a 
factor ~1/2. 

In Figs 7 and 8, the cut-off at P, for each indentor 
size indicates a zero probability of failure for loads 
below the minimum critical load. Figs 7 and 8 also 
show that, as expected, the spread in fracture loads is 
less for weathered glass than for as-received glass. 
However, the minimum critical load remains the same. 

It is of interest to note that we have expressed the 
probability of indentation failure in terms of Weibull 
statistics which were determined from bending tests 
involving a stress field which is nearly constant with 
depth over a distance characteristic of the flaw size. 
This is possible because we are expressing the prob- 
ability of indentation failure in terms of the prob- 
ability that certain areas of surface contain flaws 
within various size ranges. This probability is a pro- 
perty of the surface and the surface strength para- 
meters m and k may be determined through bending 
tests. A suitable combination of these probabilities 
gives the probability of failure for the special case of 
the diminishing stress field associated with an indenta- 
tion fracture. 

5 .  H e r t z i a n  f r a c t u r e  d a t a  
Many indentation experiments described in the liter- 
ature have used spherical indentors. The present work 
includes experiments with both cylindrical and spher- 
ical indentors although our theoretical analysis 
focuses exclusively on cylindrical indentors. In this 
section we compare previously published Hertzian 



fracture data with our own experimental results and 
theoretical predictions. 

5.1. Experimental procedure 
Indentations were made with hardened steel cylindri- 
cal punches on both as-received and abraded speci- 
mens of soda-lime glass. Tests were also carried out 
using hardened steel spherical indentors. For both 
cylindrical and spherical indentors, the effects of lubri- 
cated and non-lubricated contacts were investigated. 

The cylindrical punch indentors were machined 
from silver steel and subsequently hardened by heat 
treatment. The ends of the punches were ground and 
polished. The spherical indentors were commercially 
available steel ball bearings. The glass specimens were 
as-received soda-lime float glass sheets measuring 
2 2 0 m m x 1 4 0 m m x 4 m m ,  all cut from the same 
parent plate. No special cleaning or surface prepar- 
ation was carried out prior to testing. For  the tests 
involving abraded specimens, the glass sheets were 
abraded in perpendicular directions on one side only 
using wet-and-dry 320 grit abrasive paper. It is inter- 
esting to note that various methods of abrasion have 
been used in previous work of this kind. For  example, 
Mouginot and Maugis [7] used mainly abrasive 
paper, whereas Langitan and Lawn [13] used a slurry 
of silicon carbide grit. 

For those tests involving lubricated contact be- 
tween indentor and the specimen, the indentor was 
dipped into machine cutting fluid (a high-pressure 
lubricant) prior to each indentation. 

The glass sheets were placed on the bed on an Instron 
4302 testing machine fitted with a 10 kN load cell. 
Each indentor was forced onto the specimen surface 
with a crosshead speed of 0.5 mm min-  1. The indentor 
load was noted at the instant a cone crack became 
visible through a microscope positioned for this pur- 
pose. About 20 indentations were made for each 
punch diameter. 

For non-lubricated cylindrical indentors on as-re- 
ceived glass, it was observed that plastic deformation 
of the punch occurred due to the large loads required 
to initiate fracture. The deformation resulted in a 
permanent increase in the punch diameter of about 
25% although the ends remained very nearly flat. 
Further testing revealed no additional increase in 
diameter. The enlarged punch diameter, after defor- 
mation, is used in the presentation of the results for 
this specimen surface condition. 

A series of indentations was carried out on both 
sides of one particular as-received specimen to estab- 
lish whether or not the glass had suffered different 
levels of abrasion during manufacture and handling. 
Hamilton and Rawson [5] obtained significantly 
lower mean fracture loads for the tin bath side of their 
float glass and inferred that this side was damaged as 
the glass sheet passed over various rollers during 
manufacture. In our experiments, however, the results 
from both sides were indistinguishable. 

It was observed that for cylindrical indentors with 
dry contact on as-received glass, conical indentation 
fracture did not occur. Instead, the specimen fractured 

catastrophically. However, normal Hertzian cone 
cracks were obtained with lubricated contact between 
the indentor and the specimen. 

The conical cracks obtained in the experiments of 
the present work were typical Hertzian cone cracks as 
reported in the literature. An inner ring on the surface 
of the specimen marked the indentor contact area and 
a larger ring, slightly eccentric to the inner ring, 
indicated the beginning of the cone crack. The point of 
initiation of the crack was readily apparent and an 
area containing radial striations indicated the region 
where the crack was both travelling downwards and 
around the contact area. The location of the meeting 
of the two ends of the crack as they travelled around 
the contact area was diametrically opposite to the 
starting location. Well-formed cones were observed 
for both cylindrical and spherical indentors. 

5.2. Charac te r i s t i c s  of  Her tz ian f rac tu re  
Two parameters derived from indentation fracture 
data may be considered for comparison purposes: the 
minimum critical load for failure and the mean or 
median load for failure. For abraded specimens, we 
expect there to be little difference between the min- 
imum and mean fracture loads. Following Hamilton 
and Rawson [5], we make no distinction between the 
mean load and the median fracture load, although it 
should be noted that the median fracture load corres- 
ponds to a probability of failure of precisely 50%. 

5.2. 1. Min imum critical fracture load 
As before, we let P, denote the minimum critical load 
for an indentation fracture to occur. We would expect 
this minimum critical load to correspond to the frac- 
ture load observed in experiments on glass with a high 
density of flaws, that is, on abraded glass. All ex- 
periments involve some degree of experimental error 
and our own experience indicates that there will al- 
ways be some variation in fracture loads, even for well- 
abraded specimens. Thus, although in this section we 
are concerned with the minimum load for failure, we 
assume that this is represented by the mean load when 
reporting results from tests on abraded specimens. In 
making this assumption, we are implying that the 
degree of abrasion is sufficient to introduce flaws of a 
size within the Auerbach range uniformly throughout 
the surface of the specimen and that variations actual- 
ly observed arise from experimental causes only. Ex- 
periments with abraded specimens [13] typically show 
only a standard deviation of about 5% compared to 
20%-30% for as-received specimens. 

Fig. 9a shows the minimum critical load, as deter- 
mined from the mean fracture load for abraded glass 
specimens, reported in various literature sources 
[7, 13] for spherical indentors. Also shown in Fig. 9a 
are the experimental results of the present work for 
spherical indentors on abraded glass for both lubri- 
cated and non-lubricated contact. 

Equations 21 and 22, in combination with Equa- 
tion 1, predict a straight line relationship between 
spherical indentor radius and minimum critical load. 
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Figure 9 Minimum critical fracture load versus indentor radius for 
abraded glass from various literature sources and the experimental 
data of the present work: (a) Spherical indentors, (b) cylindrical 
indentors. (a) (O) Experiment, abraded 320, lubricated soda-lime 
float; (O) experiment, abraded 320, non-lubricated soda-lime float; 
(~) [13], abraded 600, soda-lime plate; ( I )  [13], abraded 400, 
soda-lime plate; (A) [-7], abraded 400, borosilicate. (b) (E3) Experi- 
ment, abraded 320, non-lubricated soda-lime float; (O) experiment, 
abraded 320, lubricated soda-lime float; (A) [7], abraded 400, 
borosilicate. 

This is expected because Equation 21 assumes a speci- 
men surface containing flaws of all sizes and does not 
give any information about the probability of finding 
a particular sized flaw at a particular starting radius. 
As the indentor size is increased, the flaw size corres- 
ponding to the Auerbach range also increases and it is 
from flaws within the Auerbach range that failure first 
occurs, because the function ~(c/a), as shown in Fig. 5, 
is a maximum in the Auerbach range of flaw sizes. 
Even though our theoretical work is concerned prim- 
arily with cylindrical indentors, the theory leading to 
Equations 21 and 22 is just as applicable to spherical 
indentors, the contact area, a, being related to the 
indentor radius, R, by Equation 1, and where the 
function qb(c/a) applies to the corresponding stress 
field for a spherical indentor. 

The experimental data of the present work for 
spherical indentors does not agree particularly well 
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with those of the 1969 results of Langitan and Lawn 
who used abraded "plate" glass. Both our results and 
those of Langitan and Lawn significantly different 
from those of Mouginot and Maugis, who used abr- 
aded borosilicate glass. According to Equations 21 
and la, the slope of the linear regions of the data of 
Fig. 9a is directly proportional to the fracture surface 
energy, y. In this work, we cannot apply Equation 21 
directly to the data in Fig. 9a, for spherical indentors, 
because our estimate of ~a = 0.0013 was made using 
the stress field associated with a cylindrical indentor. 
However, the general form of Equation 21 still applies, 
and it is evident from the slope of the data in Fig. 9a 
that the fracture surface energy estimated by 
Mouginot and Maugis is some two to three times 
lower than that which would be determined from both 
our data and that of Langitan and Lawn. It should be 
noted that Mouginot and Maugis [7] estimate 
a fracture surface energy of 4.5 Jm  -2 from their 
data, which is in good agreement to a predicted 
value of 5.2 J m -2 for borosilicate glass for Klc 
= 0.85 M P a m  1/z. Fig. 9a also shows that there ap- 

pears to be little difference in the fracture loads for 
lubricated and non-lubricated contact for spherical 
indentors on abraded specimens. 

Fig. 9b shows the mean fracture loads for cylindr- 
ical indentors on abraded glass from both the present 
work and data estimated from Fig. 21 of Mouginot 
and Maugis [7]. As before, for abraded specimens, we 
assume that the mean load corresponds to the min- 
imum critical load, P,. Note that Fig. 9b shows data 
for fracture load as a function of a 3/z which, if 
Auerbach's law holds as in Equation 21, should give a 
linear relationship with Pa. It is evident that if Equa- 
tion 21 truly describes the indentation process, then 
the fracture surface energies implied in the present 
work are considerably higher than the 3.6 J m -2 pre- 
viously calculated for soda-lime glass. Mouginot and 
Maugis determined a fracture surface energy of 
4.2 J m -2 from their data for cylindrical indentors 
with qba = 0.001. The fracture surface energy implied 
by the results of the present work, for a non-lubricated 
indentor, is considerably higher. From Equation 21, 
we calculate a fracture energy of 17 J m-2 with qb(c/a) 
= 0.0013, or 13.3 Jm -2 with qb~ = 0.001. The slope of 

the data in Fig. 9b is proportional to the square root 
of the fracture surface energy. As in the case with 
spherical indentors, it is again noted that there is little 
difference between lubricated and non-lubricated 
contacts. 

Equation 21 relies on the value of qba, which has been 
determined from the calculated stress field for friction- 
less contact between the indentor and the specimen. 
The high values of fracture surface energy implied in 
our experimental results provides our justification for 
the inclusion of the factor [3 in Equation 22. Further, 
th6"value chosen for d~a at the plateau, which also 
influences the estimate of T, is to some extent a matter 
of individual judgement. Any error in estimating qb, 
can also be absorbed by [3. Even though we observe 
little difference in fracture loads between lubricated 
and non-lubricated contact for abraded specimens for 
both spherical and cylindrical indentors, we find that 



this is not the case for tests on as-received specimens. 
We discuss the significance of 13 and the effect of 
contact friction in Section 6. 

Equation 22, with the exception of the factor 13, is a 
description of the energy balance model proposed by 
Mouginot and Maugis, and we are not concerned with 
the calculation of the probability of fracture until we 
consider the mean fracture loads in the next section. 

5.2.2. Median fracture load 
In an attempt to explain Auerbach's Law, some work- 
ers have correlated the values of scatter in the fracture 
loads with the surface flaw characteristics of the speci- 
men to arrive at a relationship between the median 
fracture load and indentor radius. For  example, Oh 
and Finnie [12] initially determined Weibull para- 
meters from bending tests on glass strips. The prob- 
abilities of failure for annular regions surrounding the 
indentor were calculated upon the basis of a non- 
diminishing stress field and combined to give a total 
probability of failure. From these results, the expected 
value of the fracture load for a given indentor size was 
calculated and compared with the mean fracture load 
obtained from indentation experiments. In a similar 
series of experiments, Hamilton and Rawson I-5] de- 
termined the Weibull parameters which best described 
indentation fractures. 

Fig. 10a shows the mean fracture loads for spherical 
indentors on as-received surfaces as reported in vari- 
ous literature sources 1-5, 12, 13] as well as the experi- 
mental results of the present work. It is evident that 
the slopes of the data sets shown in Fig. 10a are very 
different. The mean fracture loads obtained in the 
experiments of the present work, on as-received float- 
glass, are very similar to those obtained by Hamilton 
and Rawson [5] for the "free" side of their float glass 
specimens. These workers found that the tin side of 
their specimens was significantly weaker than the free 
side, as would be expected for a surface which has 
suffered some abrasion during manufacture. As noted 
above, no such difference was observed in our meas- 
urements. Evidently, the float glass used in the present 
work did not suffer the same type of damage during 
manufacture and handling as that used by Hamilton 
and Rawson. 

For the abraded glass, our experimental results for 
as-received specimens show a somewhat higher mean 
fracture load than those obtained by Langitan and 
Lawn. It should be noted, however, that Langitan and 
Lawn used plate glass, which probably contains a 
significantly higher density of flaws, especially in the 
as-received condition, due to its method of manufac- 
ture. This is in accordance with the results of Hamil- 
ton and Rawson [5] who found that the slope of a plot 
of log P versus log R in the Auerbach range was 
sensitive to changes in surface condition. The results of 
Oh and Finnie [12], who used borosilicate glass, show 
substantially lower mean fracture loads for all in- 
dentor radii and we discuss the significance of this 
shortly. It should be finally noted that there is little 
difference between the slope of the lines of best fit to 
the experimental data from the present work for lubri- 
cated and non-lubricated contact. 
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Figure 10 Mean fracture load versus indentor radius for as-received 
glass�9 Results from the present work are shown for non-lubricated 
and lubricated contact. Also shown are the results obtained from 
various literature sources for similar experimental conditions: (a) 
spherical indentors; (b) cylindrical indentors. Also shown in (b) are 
the calculated mean fracture loads for ( - - - )  as-received and 
( - - -  ) weathered glass based upon y = 3.6 J m -a, 13 = 2.5 and 
also ( - - )  the calculated minimum critical load Pa. (a) (@) Experi- 
ment, as-received, lubricated soda-lime float; (�9 experiment, as- 
received non-lubricated soda-lime float; ( x ) [5], as-received boros- 
ilicate; (O) [12], as-received borosilicate; [13], as-received 
soda-lime plate. (b) (�9 Experiment, mean load, as-received 
soda lime float. 

Although the theory predicts that, within the Auer- 
bach range there is a linear relationship between the 
minimum critical load and the indentor radius, there is 
no particular reason why this should be so for median 
or mean fracture loads. Indeed, if a linear relationship 
were to exist, it would be expected that the Auerbach 
constants obtained from such data would be largely 
determined by the flaw statistics of the sample, rather 
than by the intrinsic properties of the materials. 

Experimental data for fracture load using lubricated 
cylindrical indentors on as-received soda-lime glass 
are shown in Fig. 10b. As noted above, conical frac- 
tures could not be obtained with non-lubricated cylin- 
drical indentors on as-received specimens. Fig. 10b 
also shows calculated values for the minimum critical 
load, and the mean fracture loads for both weathered 
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and as-received glass using cylindrical indentors. The 
calculated curves were obtained using a value for 
[3 = 2.5. This was found to give good agreement with 
the experimental data for lubricated contact on as- 
received glass, and also reflects the difference in appar- 
ent surface energies implied by the data in Fig. 9a and 
b. Although our use of the scaling parameter  [3 is 
somewhat empirical, it does serve to quantify the 
degree of interfacial friction, at least to a first approx- 
imation. The validity of this procedure can be more 
fully appreciated with reference to Figs 11 and 12. 

In Fig. 11 we have plotted the spread of fracture 
loads for as-received soda- l ime glass for one particu- 
lar cylindrical indentor with lubricated contact. 
Fig. 11 shows that most fractures occur at a load 
several times greater than the minimum fracture load, 
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Figure l l  Histrogram of number of failures versus fracture force 
from experimental data on as-received glass for a lubricated cylin- 
drical indentor of radius 0.4 mm. 
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Figure 12 Cumulative histogram showing probability of failure for 
a cylindrical indentor, radius 0.4 mm, from (C)) experimental data, 
together with ( ) the calculated probability of failure for 
as-received glass assuming 7= 3.6Jm -2 and 13=2.5, m= 7.3, 
k= 5.1 xl0 5v. 

but there is a significant number of fractures for 
intermediate loads. The data of Fig. 11 are re-plotted 
in Fig. 12 as a cumulative distribution which is nor- 
malized to give the probability of failure. Also shown 
in Fig. 12 is the calculated probability of failure 
obtained from the method previously described in 
Section 4. the calculated curve shown in Fig. 12 uses 
the same value for [3 as in Fig. 10b. 

We discuss the significance of the results presented 
in Figs 10b, 11 and 12 in the next section. However, it 
should be noted at this point that the calculated values 
of mean fracture loads use surface strength para- 
meters, m and k, obtained by Brown from a fit to a 
range of fracture data from experiments conducted 
with both plate and sheet glass. The sizes of the flaws 
which initiate fracture in indentation tests are gen- 
erally much less than those sampled in bending failure 
tests. The validity of our calculated results depends 
upon whether the extrapolation to smaller flaw sizes, 
inherent in the Weibull statistics assumed in Equa- 
tion 23, is appropriate. 

6. D i s c u s s i o n  
The results of our finite-element calculations and our 
experimental observations raise important questions 
about  the role of slip in establishing a classical 
Hertzian stress field within a specimen loaded by a 
cylindrical indentor. Theoretical treatments of 
Hertzian fracture have traditionally assumed a condi- 
tion of full slip. Argon et al. [-18] show that the mean 
fracture load for tests with spherical indentors and 
lubricated contact do not differ greatly compared with 
the mean fracture load obtained with non-lubricated 
contacts. However, Johnson et al. [-9] propose that 
Argon et al. did not achieve a condition of full slip 
with their apparatus and report that, due to elastic 
mismatch between indentors and specimens 
possessing different elastic properties, mean fracture 
loads up to 50% higher are obtained when the in- 
dentor is more rigid than the specimen. Spence [19] 
provides a mathematical description of the phenom- 
enon, for both cylindrical and spherical indentors, 
which proposes an inner circle of adhesive contact 
surrounded by an annular region where the degree of 
slip is determined by the coefficient of friction at the 
interface. 

Our finite element calculations, for a cylindrical 
indentor, show that the indentation stress field is 
significantly modified when the indentor is securely 
bonded to the specimen - a condition of no slip. Our 
experimental work shows that although for abraded 
specimens there was little difference between the frac- 
ture loads for lubricated and non-lubricated contact, a 
considerable difference was noted for cylindrical in- 
dentors on as-received glass. This is not surprising, 
because for abraded specimens, contact is no doubt 
occurring via the asperities associated with the rough- 
ness of the specimen surface. For  an as-received sur- 
face, the lubricant would be more uniformly spread 
across the contact surface leading to a lower overall 
level of friction. This may not be the case for spherical 
indentors where the geometry may lead to quite differ- 
ent levels of friction. 
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The value of fracture surface energy 7 = 17 Jm  -2 
for soda-lime glass implied by the data shown in 
Fig. 9b, and using Equation 21, is considerably larger 
than the predicted value of 3.6 J m-2. However, the 
value for (~a in Equation 21 assumes a stress field 
associated with a condition of full slip. If, in fact, only 
partial slip actually occurs during indentation ex- 
periments, then the results of the finite element work 
suggest that a larger force would be required to pro- 
duce stress levels capable of initiating fracture. Thus, 
although Equation 21 may be used to estimate 
changes in fracture surface energy, it may not be a 
reliable estimate of its absolute value, because even 
with lubricated contact, a condition of full slip cannot 
be guaranteed. 

The predicted fracture surface energy of borosilicate 
glass, 7 = 5.2 Jm  -2, is higher than that of soda-lime 
glass, 7 = 3.6 J m -  z. However, it is interesting to note 
that both Mouginot and Maugis [7], and Oh and 
Finnie [12] obtained consistently lower fracture loads 
for borosilicate glass compared to the results of the 
present work and that of Langitan and Lawn for 
soda lime glass for similar sized indentors. We may 
possibly infer, therefore, that there is inherently more 
friction associated with soda-lime glass than with 
borosilicate glass. The data of Figs 9 and 10 imply that 
the presence of friction raises the fracture forces by a 
factor of approximately 2.5 as implied by our choice of 
the factor 13 in Equation 22. This is in qualitative 
agreement with the findings of Johnson et  al. [9] who, 
as previously mentioned, observed increases in frac- 
ture loads of up to 50% under certain conditions of 
elastic mismatch between the indentor and the speci- 
men. 

A full treatment of interfacial slip is beyond the 
scope of the present work. Our purpose in this work is 
to demonstrate a method whereby the probability of 
obtaining a Hertzian cone crack may be calculated if 
the specimen surface can be characterized by the 
Weibull strength parameters, m and k. Experimental 
evidence shows that in order to achieve this goal, a 
precise knowledge of the indentation stress field is 
required and this is influenced by the presence of 
friction. We propose that this may be done in the first 
instance by the factor 13 in Equation 22. Further 
experimental work should be done to investigate the 
role of slip. For  surfaces with a low density of flaws, 
both slip and the presence of flaws influence the mean 
fracture load. These two effects could be separated by 
conducting tests with a cylindrical indentor where the 
specimen surface was abraded only outside the con- 
tact area. This would indicate whether or not the level 
of tensile stress was indeed sufficient to initiate a cone 
crack. Alternately, the surface stresses near the contact 
could be measured directly using strain gauges. 

Workers who have attempted to apply flaw statist- 
ical methods to explain Auerbach's law have done so 
without considering the diminishing stress field in the 
vicinity of the indentor. Oh and Finnie [12] use 
surface flaw parameters obtained from bending tests 
but apply them incorrectly, using only the surface 
stress levels in the Weibull formula. Hamilton and 
Rawson [5] determine surface flaw strength para- 

meters which describe the variation of the median 
fracture load but again do so in terms of the surface 
stresses. The energy balance approaches of Frank and 
Lawn, and Mouginot and Maugis show that the 
diminishing stress field is a key feature of the phenom- 
enon. The present work describes how flaw statistics 
may be combined with energy balance arguments to 
give a more complete treatment of the problem. 

It is clear from the present work that the value of the 
Auerbach constant depends upon the specimen sur- 
face condition. There appears to be considerable 
confusion in the literature about whether Auerbach's 
law refers to mean, median or minimum fracture 
loads. Indeed, Auerbach's original paper [3] gives 
only scant mention to the linear relationship between 
indentor load and radius. The present work shows 
that there is no particular reason why there should be 
this linear relationship for median or mean fracture 
loads for surfaces which do not contain a large density 
of flaws. We are led to conclude that, although the 
explanation of Auerbach's law has its origins in the 
energy balance theories of Frank and Lawn, and 
Mouginot and Maugis, the actual value of the Auer- 
bach constant for mean fracture loads is influenced by 
the surface flaw statistics of each specimen. Further, 
Auerbach's law in the strictest sense only applies to 
well-abraded specimens. 

We have used surface-flaw parameters determined 
by bending of large sheets of glass to predict the 
probability of the occurrence of indentation fracture. 
Such bending tests involve the breakage of large areas 
of glass which are simply supported and loaded uni- 
formly in a normal direction with air pressure. Be- 
cause large areas are used, it is reasonable to suppose 
that much of the data obtained preferentially include 
failures due to larger sized flaws. In contrast, in an 
indentation stress field, large flaws do not generally 
lead to fracture. In addition, the highly stressed area is 
so small that, on average, the more numerous smaller 
flaws will normally initiate fracture. Indentation frac- 
ture tests, therefore, preferentially sample smaller sized 
flaws than bending tests. Hamilton and Rawson [5] 
note this point but incorrectly state that this prevents 
indentation failure from particularly large flaws. Hu 
et  al. [20] find that a small specimen size, in three- 
point bending tests, leads to a decrease in the meas- 
ured values of the Weibull modulus, m. In indentation 
work, the Auerbach range of flaw sizes for a typical 
indentor with a contact radius of 0.5 mm is about 
0.01-0.055 mm. Experiments with large area plates 
[16, 17] imply that many failures result from flaw sizes 
of around 1 mm for weathered glass and 0.3 mm for 
as-received glass, an order of magnitude larger than 
the flaws associated with indentation failure. 

In Figs 11 and 12, we have focused our attention on 
one particular indentor size and compared the prob- 
ability of failure predicted by the theory to that found 
by experiment for as-received glass. Reasonably good 
agreement is obtained. However, the experimental 
evidence at the lower load range suggests that the 
surface of our as-received specimens does not contain 
a distribution of flaw sizes which corresponds to a 
Weibull distribution. This is shown by existence of 
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failures within the lower load range. We conjecture 
that there may indeed be two surface flaw distribu- 
tions each of which may be described by Weibull 
statistics. We do not pursue this idea further in the 
present work. The lower limit to the fracture load 
corresponds closely to that predicted by the theory. 
This is expected because the lower limit to the fracture 
load is independent of the surface flaw statistics of the 
specimen. 

This work demonstrates that the finite element 
method can be used to calculate the indentation stress 
field associated with a cylindrical indentor. For a 
condition of full slip, inwards movement of material 
beneath the indentor causes the surface of the speci- 
men just outside the contact area to be placed in 
tension. This tension is characteristic of the Hertzian 
indentation stress field, If this inwards movement of 
material is restricted, by frictional forces generated by 
adhesive contact between the indentor and the speci- 
men, then the level of tensile stress is significantly 
reduced. 

It should be noted that the flaw size in this termino- 
logy refers to the flaw depth, not its length along the 
surface. Throughout this work, we have always as- 
sumed circular symmetry. Evidently a more complete 
analysis of the problem will include the growth of a 
surface flaw into a circular ring. Our experimental 
work shows that the growth from a flaw into a ring is 
by no means instantaneous. 

In the present work we have considered flaws sizes 
as if they were always sharp and oriented normally to 
the applied stress. In practice, there are considerable 
variations to these parameters. It is convenient to 
assign an equivalent flaw size to the actual flaw size 
within a specimen. A size equivalent to a penny- 
shaped, perpendicularly oriented sharp flaw may be 
included via a geometry correction factor in Equa- 
tion 9. In this work, we have not applied such a 
correction because the energy balance analysis has 
always assumed circularly symmetric flaws which sur- 
round the indentation site, an obvious over-simplific- 
ation. However, the surface flaw parameters m and k 
are indirectly related to flaw sizes through Equations 9 
and 22. 

7. Conclusion 
We have shown that flaw statistics plays an important 
role in determining the indentation fracture strength 
of brittle solids. We have reviewed both the energy 
balance and flaw statistical explanations of 
Auerbach's law. A novel application of Weibull stat- 
istics has permitted the determination of the mean 
fracture load for a given indentor and specimen sur- 
face condition. 

Indentation experiments were conducted on 
soda-lime float glass and compared with the predic- 
tions of the theory and the data of previous workers in 
this field. We have shown that although the explana- 
tion of Auerbach's law has its origins in the applica- 
tion of Griffith's energy balance criterion for crack 
growth, the actual value of the Auerbach constant for 
a particular specimen is influenced by its surface flaw 

statistics. Further, Auerbach's law in the strictest sense 
only applies to well-abraded specimens. The import- 
ance of slip between the indentor and the specimen has 
been highlighted using both experimental and finite 
element modelling methods. This work shows that the 
indentation strength of brittle solids which do not 
contain a high density of flaws may be substantially 
higher than that implied by previously published in- 
dentation test data. 
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